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Abstract—This paper presents an analysis of the vehicular
traffic prediction system under the data falsification attack. The
proposed analysis shows the effect of orchestrated attacks on
Deep Neural Network (DNN) based traffic prediction algorithm.
We provide an efficient model for traffic data distribution
and management. Based on the proposed model, we investigate
traffic gradient based anomaly detection algorithm against data
falsification attacks. The proposed anomaly detection method
uses dynamic time window to find the traffic gradient at different
time. The presented approach finds the presence of anomaly
and also accurately detects the type of attack launched by
an adversary. The simulation results show that the proposed
algorithm identifies data falsification attacks with an accuracy of
≈ 70% within a very short interval of attack time and about ≈
95% for the longer interval. Furthermore, the algorithm detects
the attack type with an accuracy of ≈ 90%.

Index Terms—Smart and connected communities, Data falsifi-
cation attacks, Anomaly detection, Traffic prediction

I. INTRODUCTION

The idea of Smart and Connected Communities (SCC)
incorporate smart cities, smart transportation, smart homes,
smart learning, and smart agriculture, all tied together through
the Internet connection [1], [2]. The SCC is enabled due to
the recent developments in technologies like RFID tags or
nano-technology based sensors. These sensors can accurately
monitor the environmental parameters and also occupy very
small space [3]. Thus, they can be easily installed on any
device or at any place. The measured parameters from the
distributed set of sensors are transferred to the centralized
system like the cloud, edge, or SDN controller for processing
where it is used for making analytical decisions [1], [4].

One such example is the sensors, loop detectors, or cameras
installed throughout the streets of a city and used for gathering
information about the traffic count and the speed of the
vehicles at different locations [5]. The collected data from
sensors is sent to the centralized unit where it is processed
to enable making analytical decisions for providing efficient
SCC based services. Such as, the trend and patterns in traffic
flow can be observed and based on that accurate forecasting
of traffic behavior assists in pro-actively making better travel
decisions, traffic congestion control, electric vehicle charging,
and intelligent transportation [6].

There have been several traffic prediction methods in lit-
erature to estimate the future traffic count [7]. However, the
researchers have used the clean data to determine the future
traffic pattern and assumed that the sensors are providing
accurate information. The impact of the prediction algorithm
when it is fed with the incorrect data has not been investigated
in the literature. The measured traffic parameters can be
corrupt due to the injection of data falsification attacks. Data
falsification attacks are the kind of vulnerabilities where some
measured values can be intelligently altered such that the
associated system behaves abnormally [8]. Such attack can
severely hurt the performance of the prediction method and
affect the proactive intelligent decision making by SCC based
service providers.

Data falsification attack can either be limited to few sensors
or an orchestrated attack on several sensors can be launched.
Since the traffic behavior is spatially and temporally cor-
related, an attacker can intelligently target correlated group
of sensor nodes. The attack can be launched by nefarious
adversaries, like business rivals or organized criminals [9],
seeking long-term benefits. These adversaries are equipped
with the resources that can bypass the cryptographic security
mechanism [8]. For example, an adversary can alter predicted
traffic count near some electric vehicle charging station by
changing historical traffic count values in the correlated group
of sensors. This can lead to mismatch between energy supplied
from the smart grid and actual energy demand at a charging
station. Also, the estimation of the wait time for an electric
vehicle at a specific charging station may go wrong resulting
in charging service provider giving incorrect information to the
customers. Albeit, the customer’s trust in that service provider
can be affected resulting in revenue loss for that company.

The problem of determining anomalous data points due to
data falsification attack in traffic count is complicated because
of several reasons. The amount of data from the sensors is
of enormous quantity such that manually analyzing the data
is infeasible. Additionally, the possible types of attacks that
an attacker can introduce is generally not known in advance.
Moreover, the traffic count is affected by external factors like
climatic conditions, events, construction, or emergency situa-
tions. These conditions may cause the traffic count to behave
abnormally. Therefore, distinguishing whether the abnormal
number is due to data falsification attack or external factors978-1-5386-7693-6/18/$31.00 c©2018 IEEE
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complexifies detection of such vulnerabilities.
This paper addresses the issue of data falsification attack

for the traffic prediction system. Since deep learning has
been found as an efficient technique to predict both short
and long-term traffic accurately, [10], [11], [7], we use a
multilayer neural network as our traffic prediction algorithm.
We propose a hierarchical data flow and data management
model consisting of sensors, edge server, and cloud. The
proposed model describes how an adversary can affect the
applications hosted at the edge server. We investigate the
impact of data falsification attack on the performance of the
deep neural network algorithm. We also discuss the amount
false injection that an attacker should introduce to cause any
noticeable error in prediction performance. Further, the paper
provides a novel gradient-based anomaly detection method to
detect the time for which a sensor is under data falsification
attack. The proposed detection method also finds the type of
the attack injected by an adversary.

The rest of this paper is organized as follow. Following
this section, in section II, a brief literature survey has been
described. Section III presents the proposed system model.
System IV explains the prediction performance. In section V,
we describe the problem statement and proposed algorithm. In
section VI, simulation experiments and results are presented
and in section VII we conclude this paper.

II. LITERATURE SURVEY

There has been work done in the literature regarding
anomaly detection. Supervised learning is one of the tech-
nique to differentiate between anomalous and non-anomalus
data points. In [12], Malhotra et al. has proposed an LSTM
network-based anomaly detection in time series data. The
given network is trained for the non-anomalous data and is
used as a predictor. The obtained error is used to find the
anomalous behavior. Cheng et al. has described the anomaly
detection for BGP traffic using MS-LSTM network. The
author has explained that processing of the traffic data over
a suitable time frame can significantly improve the traffic
prediction accuracy. Although, LSTM network-based approach
is suitable for capturing features of a time series model,
they use labeled set of data for training the network. Often
the labeled set of anomalous data is not known, and hence
the approaches as mentioned above are valid only when the
training set data is pre-known in advance.

Principal Component Analysis (PCA) is also a popular
technique for anomaly detection. Netflix has proposed an
outlier detection method using the PCA [13]. Hendrycs et.
all has proposed the detection method of adversarial images
using PCA in [14]. The work has shown that the adversarial
examples put more focus on the low ranked principal com-
ponents. However, the PCA based methods are based on the
assumption that dominant vectors in high-dimensional data are
orthogonal to each other. The assumption cannot be always
true, and hence, PCA cannot be used for all kinds of data-set.

Clustering is another popular technique to detect anomaly
as shown by Li et al. in [15] and Pandeeserai et al. in [16]. In

[15], Li et al. has investigated a novel feature representation
approach, viz. cluster center and nearest neighbor (CANN).
The method outperforms than the traditional k-NN or SVM
based approach. In [16], Pandeeserai et al. has proposed an
anomaly detection method using a hybrid of Fuzzy C-Means
clustering algorithm and Artificial Neural Network (FCM-
ANN). The presented method outperforms than the Naı̈ve
Bayes classifier and classic Artificial Neural Network (ANN)
even for low frequency attacks. However, as presented by
Ahmed et al. in [17], clustering method is not always suitable
as any new valid data may also be considered anomaly.

This paper proposes a gradient based technique to detect
anomaly in vehicular traffic. The presented method uses a
dynamic window size for identifying outliers in the data
set. In contrast to the aforementioned works, the proposed
work use gradient-based information and does not rely on the
orthogonality of the data set. Moreover, rather than supervised
learning approach like LSTM networks, the proposed method
does not use pre-known anomalous dataset for training.

III. SYSTEM MODEL

System model consists of en-route vehicles in a specific
part of the city. The road network is divided into zones
based on their spatial location. Loop detectors are installed
along the road to measure traffic volume and speed of the
vehicles. The loop detectors continuously measure the data
and the aggregate data over a periodic time interval τ is
sent to the centralized edge server. Edge server brings the
cloud computing capabilities near the user and is used for
analysis and storage of the data [18], [19]. The proposed edge
server has analytical modules like advance traffic prediction
that predicts the future traffic counts and thus supports ap-
plications like charging station allocation for PEV charging
[20], efficient traffic routing, or traffic speed management
[21]. The processed information is transmitted either to the
vehicle’s dashboard or the user’s mobile phone. The filtered
information from the edge server is sent to the remote cloud
for making long-term analytical decisions like city planning
and management.

An adversary may target a group of loop detectors over
a time interval Γa such that data sensed from the loop
detectors is corrupted, and the incorrect information is sent
to the edge server. Because of that, the analytics hosted at the
edge platform performs adversely affecting the performance
of different services. Additionally, the small anomalies added
at the sensors get cumulated at the cloud and may also impact
the long-term decision making at the cloud. To address this
issue, we propose an anomaly detector that is placed in the
edge server. The incoming data from loop detectors is first
analyzed by the anomaly detector to find if it is a clean data.
After analysis, filtered data is sent to the analytic applications
for assisting different services.

IV. PREDICTION PERFORMANCE

We evaluate the performance of the Deep Neural Network
(DNN) under the condition that an adversary modifies the

689



0.5 1.0 1.5 2.0 2.5 3.0
Atttack strength

0.0

0.1

0.2

0.3

0.4

0.5
E
rr
o
r

16.6
33.3
50
66.6
83.3

(a) Additive attack

0.5 1.0 1.5 2.0 2.5 3.0
Atttack strength

0.0

0.1

0.2

0.3

0.4

0.5

E
rr
o
r

16.6
33.3
50
66.6
83.3
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Fig. 1: Effect of attack as magnitude of attack is varied
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(b) Deductive attack

Fig. 2: Effect of attack as percentage of values in input vector
are varied

sensor data. DNN has been widely used for traffic road-side
traffic prediction [7]. We use multi-layer perceptron based
DNN trained using backpropagation algorithm. The given
neural network uses the historical traffic from a group of
sensors to predict future traffic at a particular location. The
network provides an accuracy of 95% when clean data is used
as an input to the neural network. We modify the input to
the DNN, during its operation, randomly, either by a positive
(additive attack) or negative (deductive attack) value. We
assume that the attack is not introduced during the training
phase of the network. The attack is injected while the neural
network is used for the prediction application. We examine
the error variation at the output node as attack strength or
percentage of values in the input vector is varied.

Figure 1 shows the performance of the DNN for the case
when attack strength is varied for different percentage of
values in the input vector. Here, it should be noted that the
input vector contains the data coming from the loop detectors
(that may be under attack). As expected the prediction error
increases for the higher percentage of input vector values under
attack and greater attack strength. Figure 1a and 1b show that
to cause significant variation in error either attack strength has
to be high or a large percentage of values in the input vector
have to be altered. For example, in Figure 1a if an adversary
injects an attack of strength 0.5 (normalized value) per input
value then if 83.3% of values in the input vector are changed
the error goes above 10%. Otherwise, for the low percentage
of input vector values under attack, the prediction error is in
the range of 5%.

Figure 2a and 2b present the scenario when the percentage
of sensors under attack are varied for different attack strength.
The figure depicts that irrespective of attack strength, the error

does not increase for less percentage of input vector values
under attack. However, for both the additive and deductive
attacks, as the number of sensors increases above a threshold
point, the error suddenly starts increasing. Specifically, for
additive attacks, at least 20% of input vector values feeding
input to the DNN need to be targeted. Similarly, for the
deductive attack, the number of input vector values targeted
should be around 40%.

The mentioned analysis reveals that the point anomaly
such that anomaly affecting few values are insignificant for
vehicular traffic prediction application. Since, DNN for traffic
prediction takes input from spatially correlated sensors, to
cause considerable traffic prediction error an adversary need to
target a large number of sensors or few sensors for a significant
time interval, thereby affecting the high percentage of values
input to the DNN. Correspondingly, we develop a technique
to detect the anomalies in data values over a considerable time
interval from a sensor. The proposed method can be repeated
for sensors located at different locations to find the spatially
separated anomalies.

V. METHODOLOGY

This section describes the proposed gradient-based anomaly
detection method. Before proceeding to the technique, we
describe gradient and threshold determination that we use in
the process.

A. Preliminaries

We divide the time into slots where the length of each slot is
τ . Every loop detector sends the aggregate traffic measured in
a time interval of τ and transfers the information to the edge
server. We use the gradient of traffic flow between different
time slots. However, rather than finding the traffic gradient
between two consecutive time slots, we use a window of
dynamic length l where l varies between 1, 2, ...L.

The traffic count depends on several factors that include
weekday, weekend, the point of interest, external weather
conditions, and other road-side factors. Therefore, the traffic
at a specific location can be either high or low depending on
multiple factors. For example, Figure 3 shows the traffic count
at four different locations in the same highway segment. The
values of the traffic count at different locations differ to a
large extent. Also, in a same location, the traffic deviates to a
considerable extent. For instance, the peak and trough values
vary considerably within a location. Furthermore, the behavior
of traffic is also different at different points. For example, at
location 4 traffic is highly fluctuating near peak values but the
curve has some flatness near location 1.

In order to avoid the effect of above inherent characteristic
in anomaly detection technique, we use traffic gradient for
different window size l. We use variable dli to represent
gradient at the time slot i for window size l. The value of dli
is found using equation 1. Equation 1 determines the absolute
difference between mean traffic for time slot i → i + l and
i + 1 → i + l + 1. Here, ni is the true traffic count value at
time slot i.
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Fig. 3: Traffic at a particular location

dli =
|Σi+l+1

i+1 ni − Σi+l
i ni|

l
(1)

Figure 4 shows the traffic gradient for different values of
window size l. The figure depicts that the gradient values are
low for lower window size showing traffic changes very slowly
between different time slots. As window size is increased, the
gradient also increases, but the curve becomes smoother. Thus,
for the lower window size, although the gradient is small,
its behavior is random. For the large window, the gradient
becomes large, and its curve becomes smoother.

We use traffic gradient information at different locations for
every window size to find the threshold values with regard to
the traffic changes. Then, based on the threshold values we find
the anomalous data points in the traffic patterns. Furthermore,
since for lower l values, the gradient is smaller, a lot of true
values can also be counted as anomaly. In contrast, for large
l value some anomaly can be escaped due to higher gradient
value. Therefore the gradient size is determined dynamically
between window size of 1 to L at the runtime.

B. Threshold values

We determine the threshold values for each window size l.
For every l value, we determine the threshold of the gradient
based on different locations. We use the concept that if traffic
gradient is more than the threshold value, then there is a
possibility of an attack at that point of the time.

To find the the threshold values, we use a tuple diff where
diffl is the lth list in diff and diff li is the ith element of
diffl. Value of diff li is given by the equation 2.

diff li = |
ΣD

1 Σi+l
i ni − ΣD

1 Σi+l+1+l
i+l+1 ni

D × l
| (2)

Here, D are the total number of days considered to take the
average value. For every diffl, we calculate the maximum
value of the set (max(diffl)) and append it to threshold lists
thListl. We consider a tuple thList with thListl is the lth
set of tuple thList and thListli is the ith element in set
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Fig. 4: Gradient plot for different window size

thListl. We append such maximum values obtained for every
location p (where loop detector is installed) that are sending
data to the edge server. Once we have searched max(diffl)
for all positions, the threshold for window l is obtained as in
equation 3.

thl =
ΣP

i=1thList
l
i

P
+ std(thListl) (3)

Here, P are the total number of locations and std(thListl)
is the standard deviation of the elements in list thListl. We
use the threshold values thl to dynamically decide the possible
attack points and their type.

C. Problem statement

Given the true traffic counts n1, n2, ... nN , an adversary can
inject the noise δi, δi+1....δi+j such that the traffic between
time slots i and j is added or deducted by the quantity
δi, δi+1....δi+j . The traffic after an attack is represented by
η1, η2.....ηN . The adversary may launch data falsification
attack by adding noise to the true traffic count at a particular
location within a time interval Γa. The attack starts at the time
slot i = νs and ends at the point j = νe and its type is κa.

The problem statement is to detect start point ϑs, end
point ϑe, interval Γd, and attack type κd while optimizing
equation 4, s.t. the constraints given by the equation 5.

min(|ϑs − νs|) &min(|ϑe − νe|) &

min(|Γa − Γd|) &min(|κa − κd|)
(4)

s.t.

|ϑs − νs| < m, |ϑe − νe| < m, |Γa − Γd| < 2m (5)

Here, m is a hyper-parameter which we call as the error
margin such that if the difference between actual attack time
slot and detected time slot is less than m then the anomaly
point is considered to be detected.
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Algorithm 1 Anomaly detection algorithm
Input: < η1, η2...ηN >- Set of a traffic counts

< th1, th2...thL- Set of threshold values
Output: Γd, κd, ϑs, ϑe

1: for l← 1 to L do
2: for 1← 1 to N do
3: if dli > thl then
4: Al.append(i+ 1)
5: Sl.append(sign(dli))
6: end if
7: end for
8: Replace by Centroid
9: Sign Processing

10: end for
11: Find X ∈ A with X.cardinality = 2 and

X.window size is minimum
12: Find Y ∈ S with same window size as X
13: if X! = Null then
14: ϑs = X[0], ϑe = X[1]
15: FindAttackType(Y )
16: else
17: Find X ∈ A with X.cardinality = 3 and

X.window size is minimum
18: Find Y ∈ S with same window size as X
19: r = Random(0, 1)
20: if r <= 0.5 then
21: ϑs = X[0], ϑe = X[1]
22: FindAttackType(Y )
23: else
24: ϑs = X[1], ϑe = X[2]
25: FindAttackType(Y )
26: end if
27: end if

D. Anomaly detection

Algorithm 1 explains the steps for finding the anomaly in
a traffic data where an adversary may have modified the real
data. The algorithm takes the traffic count and threshold values
for different window size and provides interval Γd, time slot
at which attack starts ϑs, time slot when the attack ends ϑe,
and attack type κd.

In algorithm 1, steps 2-9 are repeated for all window size
ranging from length 1→ L. Steps 3-6 are repeated for every
time slot values. For every l value, we determine if the traffic
gradient at that level is greater than the threshold value for
the same level. For this purpose, we use a tuple A where
Al ∈ A. The set Al contains the potential list of points where
an anomaly can be present. To find the actual start and end
point of an anomaly, we use the tuple A. We compare the dli
with thl for every time slot i ∈ 1 → N (step 3). If the dli is
greater than the thl then the point i is appended to the list Al

such that the point i may have the attack possibility (step 4).
In step 5, we determine the sign (positive or negative) of dli
and append it to the list Sl that is used for determining the
attack type. Hereby, S is a tuple such that Sl ∈ S and stores
sign of traffic gradients.

Steps 8 and 9 processes set Al and Sl to remove the
redundant values. In step 8, set Al and Sl are processed
according to values in set Al. Step 9 processes the Al and
Sl according to the values in Sl.

Since we use a window size of l, an attack that starts (or
ends) at a certain time slot νs (or νe) affects the gradient before
≈ l and after ≈ l slots (such that from time slot ≈ νa− l→≈
νa + l). We use approximate values because due to the noise
some extra time slots may be added or dropped in the set.
Therefore, we replace the occurrence of consecutive values
in set Al that differ by one to their centroid point (step 8).
For example, if Al has the elements {2, 3, 4, 8, 9, 10, 11, 150},
then after the replacement process the set will be modified to
{3, 9, 150}. We do not drop single points, and for even number
of groups, the lower centroid is kept. We also process the Sl by
keeping the corresponding elements as in processed set Al and
dropping others. For example, for every element in processed
set Al, we keep the element from Sl having the same index
as the element has in original set Al (before processing). For
the mentioned example, if Sl before processing has elements
−1,−1, 1, 1, 1,−1,−1, 1 then after processing it will contain
{−1, 1, 1}. Hereby, it should be noted that the length of the
set Al will always be equal to the length of the set Sl.

In step 9, we further process the sets Al and Sl according to
the values in the set Sl. We determine the consecutive occur-
rence of values in Sl with the similar sign and replace them by
a single value. In set Al, the values in the corresponding group
with the highest index is kept. In given example, the values
in the set {−1, 1, 1} are updated after processing to {−1, 1}.
Here, the consecutive occurrence of one is replaced by the
single value. The set Al is updated to {3, 50}. Thus, after
processing set Sl contains values such that the consecutive
values have opposite sign. The set Al contains the possible
time slots where an attack may have started or ended. The
given processing of sets Al and Sl based on their values (first
by Al and then by Sl) is done for every set Al ∈ A and set
Sl ∈ S. To determine the anomaly and its type the processed
sets Al and Sl are used.

In step 11, the list of sets Al in the tuple A having
cardinality of 2 and lowest window size l (set X) is deter-
mined. Selecting set with lowest window size has an advantage
because even small anomalies can be easily detected (due to
the low threshold value). We find the corresponding list from
set S having same window size as set X and assign it to the
variable Y (step 12). X is used to determine the start and end
points of attack such that ϑs and ϑe values respectively. Y is
used to determine the attack type κd. If the set X exists (step
13) then, the detected start point ϑs is the 0th element of X
and end point ϑe is the 1st element in X (step 14). In step
15, the attack type κd is determined from the corresponding
variable Y . If the value of Y is {1,−1}, the attack type is
additive signifying first the gradient increases and after the
attack ends gradient decreases. Otherwise, if the value of Y
is {−1, 1} the attack is deductive in nature.

If set Al with length two does not exist in the tuple A then
we determine the anomalous values from the set having the
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cardinality of 3 and with the lowest window size (steps 17
and 18). The start point of attack ϑs is chosen between 0th
and 1st element with a probability of 0.5. In step 19 and if
block 20-26, the variable r is a random variable and used
to select either 0th or 1st element as the start point with a
probability of 0.5. If 0th element is the start point ϑs then
1st element is the endpoint ϑe of the attack (step 21). Step
22 finds the attack type In this case, if the set Y contains
{1,−1, 1} then the attack is additive otherwise if set elements
are {−1, 1,−1} then the attack is deductive. On the other
hand, if 1st element is the start point, the 2nd one is chosen
as the endpoint (step 24). In tep 25, the sign of corresponding
elements in Y determines attack type.

The above process is repeated for different locations to find
the anomalies for the sensors located at that specific location.

VI. RESULTS

A. Simulation parameters

We evaluate the performance of the proposed algorithm us-
ing data obtained from the Performance Measurement System
(PeMs) that gathers freeway traffic of California Highways
[5]. We collect the traffic for October 2017 for the freeway
segment of I-680 at 136 locations. We develop python based
frameworks both for the evaluation of proposed anomaly
detection method. The obtained traffic data is normalized
between the zero and one using the min-max method.

Since the labels for anomalous data was not available, we
simulate it by randomly generating attack data. The attack is
simulated by randomly selecting the location, day, and the
time interval of the attack. The performance of the proposed
method is evaluated both for additive and deductive types of
attacks.

B. Anomaly detection

Table I-IV presents the performance of attack detection
method for different values of attack strengths χ and error
margin m. Table I and II show the results as attack strength
χ is varied for additive and deductive attack respectively for
fixed error margin m of 10. Table III and IV presents
the performance for different error margin for additive and
deductive attacks for fixed attack strength of 0.20. In each
table, the first column represents the value of the variable
parameters such that the attack strength χ or error margin
m. zs and ze end provides average percentage of time
the algorithm detects start and end time incorrectly. zs.ze

represents number of times both start and end values are
detected incorrectly. The start or end values are considered
to be incorrect if the difference between the actual time slot
at which attack starts or ends differs the detected values by
more than the error margin m. |ϑs − νs| presents the average
absolute difference between actual and detected start slot of
the attack. Similarly, |ϑe − νe| presents the average value of
the absolute difference between actual and detected end slot
of the attack. We refer |ϑs − νs| and |ϑe − νe| as Detection
margin values. |κa − κd| presents the average percentage of
time the attack type is incorrectly detected.

TABLE I: Attack detection for different amount of injected
attack strength for additive attack

χ zs ze zs.ze |ϑs − νs| |ϑe − νe| |κa − κd|
0.15 27.1 31.1 16.5 0.57 0.51 1.7
0.20 20.6 29.0 11.9 0.56 0.45 2.1
0.25 21.7 28.7 12.3 0.5 0.41 1.8
0.30 20.5 28.3 11.9 0.44 0.29 1.2
0.35 20.4 27.2 10.0 0.44 0.3 1.1
0.40 19.7 26.8 11.3 0.41 0.25 2.0
0.45 21.3 26.1 10.7 0.35 0.26 1.0
0.50 18.3 25.7 9.1 0.36 0.24 0.7
0.55 19.9 28.8 10.5 0.33 0.19 1.1
0.60 21.4 27.6 11.5 0.42 0.18 0.9

TABLE II: Attack detection for different amount of injected
attack strength for deductive attack

χ zs ze zs.ze |ϑs − νs| |ϑe − νe| |κa − κd|
0.15 32.3 40.2 25.7 0.35 0.48 17.2
0.20 22.5 32.3 17.5 0.36 0.39 8.9
0.25 19.6 31.5 14.9 0.35 0.5 5.3
0.30 19.5 28.8 14.9 0.31 0.41 3.0
0.35 19.4 30.1 12.8 0.32 0.41 1.3
0.40 17.5 28.2 13.0 0.28 0.28 1.3
0.45 18.7 29.4 12.9 0.3 0.37 0.8
0.50 16.0 27.4 12.1 0.19 0.42 0.8
0.55 18.6 29.7 13.6 0.29 0.34 0.8
0.60 17.0 26.3 11.9 0.23 0.32 0.3

As depicted in table I and II, the percentage of false start
varies between 16% to 32.3%, that is detection accuracy ranges
67.7% to 86% for false start values. Regarding false end, the
percentages are in the range of 59.8%-73.9%. Here, it should
be noted that although accuracy seems to low, the error margin
is also considered to be the low value of 10. If we look at
the fourth column of both table, the accuracy is much higher
at around 85-90%. This portrays that even if the algorithm
may detect the false start or endpoints with ≈ 70% accuracy,
the detection accuracy of both false start and end points is
more than 90%. That is the proposed method can accurately
determine at-least start or end of the attack with very high
accuracy.

Furthermore, the absolute average detection margin as
shown in column 5 and 6 is less than a one-time slot. The low
detection margin indicates that the attack is detected within
a single time slot. Column 7 shows the attack type accuracy.
Here, the algorithm identifies the attack type with a very high
accuracy of more than 97.9%. The results deduce that the
detection margin and attack type are found with very high
accuracy. Additionally, if the error margin is kept very low,
the percentage of false start or endpoint detection may be
significant, the percentage of both false start and end is low
showing that at least one point is detected accurately.

We further evaluate the performance as the error margin m
is changed for the fixed attack strength of 0.20 in table III
and IV. Results reveal that the percentage of both false start
and end point of attack decreases considerably as we increase
the margin. Henceforth, the accuracy reaches around 10% for
larger values of error margin. However, as we can see in
column 4 and 5, the detection margin is within an acceptable
range. For example, in table III for the error margin value of
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TABLE III: Attack detection for different error margin for
additive attack

m zs ze zs.ze |ϑs − νs| |ϑe − νe| |κa − κd|
10 21.1 28.4 10.8 0.44 0.42 1.5
20 18.7 25.9 10.1 1.39 0.99 1.9
30 14.0 24.8 8.6 2.67 1.45 2.2
40 10.0 21.3 5.8 3.66 3.1 3.7
50 6.7 19.6 4.2 5.17 3.82 3.8
60 5.1 17.1 3.2 6.39 5.47 3.1
70 4.7 15.8 3.3 7.91 6.23 3.3
80 3.4 14.8 3.3 8.15 7.52 3.9
90 2.6 12.7 2.5 8.01 10.51 3.7
100 1.9 10.0 1.7 8.27 12.42 4.2

TABLE IV: Attack detection for different error margin for
deductive attack

m zs ze zs.ze |ϑs − νs| |ϑe − νe| |κa − κd|
10 25.5 33.3 20.2 0.3 0.6 9.8
20 21.7 30.3 17.7 0.86 1.05 10.0
30 18.4 27.3 13.6 1.35 2.81 10.1
40 14.7 21.6 10.7 2.46 3.86 10.3
50 13.5 21.5 10.0 3.67 5.33 12.6
60 12.1 15.8 6.7 3.75 7.99 11.1
70 10.1 13.4 5.3 5.37 9.52 12.8
80 7.4 10.0 3.7 6.91 11.95 13.3
90 5.8 8.9 2.9 7.29 11.75 12.5
100 5.1 7.4 2.9 7.96 12.78 12.5

50, the average number of false start and false end points
are 6.7% (93.3% accuracy) and 19.6% (80.4% accuracy).
The combined accuracy is 95.8%. Interestingly, the detection
margin is only 5.17. Thus, the anomaly is detected with very
high accuracy within about five time slots. Henceforth, we can
deduce that by increasing the error margin, we can achieve
very high accuracy. Also, increasing the error margin does
not deviate the detection margin to a substantial value. A
considerable error margin (100) enables the algorithm to detect
attack with very high accuracy (around 95%), but the detection
margin is 7.97 and 12.78 for start and end value respectively
(Table IV).

VII. CONCLUSIONS

This paper has emphasized the importance of finding a
detection method for orchestrated data falsification attack. We
provided a novel gradient-based anomaly detection method
that does not rely on labeled dataset or orthogonal vectors
in high dimensional points. The given methods perform with
decent accuracy when error margin is kept low. The accuracy
increases on relaxing the error margin while still maintaining
the detection margin not to deteriorate significantly. In the
future, we plan to analyze our model for other possible
anomalies. The steps taken to subsidize the values of errors
to make the correct prediction in the presence of attack also
need to be investigated.
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