
A Computation Offloading Scheme Leveraging
Parameter Tuning for Real-time IoT Devices

Raj Mani Shukla∗ and Arslan Munir†
Department of Computer Science and Engineering, University of Nevada, Reno

Email: ∗rshukla@unr.edu, †arslan@unr.edu

Abstract—In recent years, proliferation of the Internet of
things (IoT) devices and applications like video processing have
caused a paradigm shift in computation requirement and power
management in these devices. Furthermore, processing huge
amount of data generated by connected IoT devices and meeting
real-time deadline requirement of IoT applications is also a
challenging problem. To address these challenges, we propose
a computation offloading scheme where computing services re-
quested by an IoT device are processed by a relatively resourceful
computing devices (e.g., personal computer) in the same local
network. In our proposed scheme, both client and server devices
tune their tunable parameters, such as operating frequency
and number of active cores, to meet the application’s real-
time deadline requirements. We compare our proposed scheme
with contemporary computation offloading models that use cloud
computing. Results verify that our proposed scheme provides a
performance improvement of 21.4% on average as compared to
cloud-based computation offloading schemes.

Index Terms—Computation offloading, IoT, cloudlet, parame-
ter tuning

I. INTRODUCTION AND MOTIVATION

Meeting the increasing computation requirement of the
novel Internet of things (IoT) applications with limited in
situ resources (e.g., computation, memory, energy) is a crucial
challenge in IoT paradigm. Computational offloading is a
technique that can help alleviate the resource constrains of IoT
devices by sending complex computations to more resourceful
devices/servers and receiving the results back from these
resourceful devices. There has been work done in literature re-
lated to computational offloading from a resource-constrained
device to a resourceful device. Li et al. [1] proposed a program
partitioning scheme for computation offloading. Kumar et al.
[2] discussed the significance of computation offloading in the
context of cloud computing. Satyanarayanan et al. [3] intro-
duced the concept of cloudlets that offered potential benefits
in terms of both latency and energy due to their physical
proximity to the user. In this work, we propose a computation
offloading scheme, which aims to exploit available computing
resources in the vicinity of resource-constrained IoT devices as
opposed to directly offloading the computations to cloud. The
proposed scheme leverages parameter tuning to adapt the IoT
device’s tunable parameters, such as processor frequency and
number of active cores, to better meet the real-time deadline
requirements of IoT applications while conserving the energy
of both client and server IoT devices.

Our proposed scheme offers various advantages over prior
computation offloading schemes. Since in our proposed

scheme, preference is given to processing the data within
a local network, there is a less dependency and pressure
on the Internet bandwidth. Hence, the proposed scheme is
particularly amenable for remote areas where cloud access
is limited. Furthermore, the local processing of data also
alleviates the security and reliability concerns for IoT devices.
The scheme offers security benefits because the data generated
from the IoT device is processed within the local network,
and hence it is not exposed to the Internet thereby minimizing
the possibility of cyber attacks. The scheme offers reliability
advantages because dependency on a single cloud server is
avoided by using multiple IoT devices in the vicinity of the
user.

II. COMPUTATION OFFLOADING SCHEME

In our proposed computational offloading model, different
IoT devices are connected with each other through various
protocols, such as Wi-Fi, Bluetooth, 6lowPAN, Zigbee or Z-
Wave. The round trip time (latency) between client and server
IoT devices is given by Eq. (1), and depends on the amount
of data shared between the client and the server (dt), network
bandwidth (BW), and the offloaded computation’s execution
time in server (tex) with a mean deviation (δd). From the appli-
cation specifications and the available communication channel,
the client IoT device can estimate the communication time to
send the data associated with the computation to be offloaded
and then to receive the computation results data from the server
IoT device. Execution time of the computation/application at
the server (tex) depends on various factors, such as processor
frequency, bus frequency, cache size, number of active cores
and characteristics of the offloaded application (e.g., compute-
intensive or memory-intensive, and the amount of available
parallelism). If a client can predict execution time (tex) of the
potential application to be offloaded in a remote device given
its hardware specifications and the application characteristics,
then the latency of the offloaded application Tapp can be
determined from Eq. (1).

Tapp =
dt

BW
+ tex ± δd (1)

We note that this latency Tapp considers the execution time
on the offloaded server as well as the offloading overhead
(communication time for data transfer).

In our proposed scheme, once a client receives the request
to execute an application, the client selects to either execute

2016 IEEE International Symposium on Nanoelectronic and Information Systems

978-1-5090-6170-9/16 $31.00 © 2016 IEEE

DOI 10.1109/iNIS.2016.63

208

TABLE I
A COMPARISON BETWEEN APPLICATIONS’ LOCAL EXECUTION TIME AT CLIENT T l

ex ,
APPLICATION’S LATENCY FOR IN-NETWORK OFFLOADING TO A REMOTE PC T rPC

app

RUNNING AT DIFFERENT FREQUENCIES, AND APPLICATION’S LATENCY FOR

OFFLOADING TO AMAZON EC2 CLOUD T cEC2
app .

Application
T l

ex T rPC
app (s) T rPC

app (s) T cEC2
app

(s) @ 1.20 GHz @ 3.60 GHz (s)

Data Sort (≈ 2.2kB) 23.34 14.43 (38.2%) 6.34 (72.8%) 10.12 (56.6%)

SVM Rank (≈ 6.6kB) 17.79 10.06 (43.4%) 3.62 (79.6%) 7.80 (56.2%)

Boltmann Machine (≈ 8.0kB) 6.66 4.74 (28.8%) 1.99 (70.1%) 4.16 (37.4%)

Cost Optimization (≈ 9.3kB) 5.29 3.79 (28.3%) 1.54 (70.8%) 4.38 (17.2%)

Bayes Network (≈ 14kB) 18.02 11.67 (35.2%) 4.25 (76.4%) 8.44 (53.2%)

SVM Pegasos (≈ 33.6kB) 41.58 19.44 (53.2%) 7.40 (82.2%) 12.66 (69.6%)

K-Mean Clustering (≈ 19MB) 43.18 32.09 (25.7%) 17.44 (59.6%) 15.13 (65.0%)

Running Statistics (≈ 20MB) 12.45 19.42 (-56.0%) 13.77 (-10.6%) 15.63 (-25.5%)

the application locally by tuning its parameter or offload the
application to a relatively more resourceful IoT device in its
vicinity. Although in this paper, we have only considered oper-
ating frequency as a tunable parameter, our proposed scheme
can be enhanced to include other tunable parameters of the
IoT device. The client also tags the deadline associated with
the application execution while offloading the application’s
tasks to a server. The server IoT device upon receiving the
offloaded tasks determines whether the tasks can be completed
by the deadline by tuning the device’s parameters based on
the list of tasks already in the server queue, available energy
budget, range of operating frequencies, and other hardware
parameters. If the server determines that the offloaded tasks
cannot be completed within the specified deadline using its
own resources, the server sends offloading requests to more
resourceful IoT devices in its vicinity or offloads the tasks to
the cloud.

III. EXPERIMENTAL RESULTS
We evaluate the effect of frequency tuning of the server

IoT device on the offloaded application’s latency by offloading
applications of different execution times and data send and
received size. For the evaluation of our proposed scheme, we
select applications from dlib library [4]. In addition, we have
also written some applications, such as, Boltzmann machine,
text search, and text reader, for testing purposes. Table I also
lists in brackets the size of data transfer (sum of the send and
receive data) between client and server for each application.
A linux virtual machine configured to one core operating at
800 MHz and having 2 GB of main memory is selected
as a client IoT device. An 8 core intel processor operating
between 0.80 GHz to 3.60 GHz is selected as a remote PC
(server IoT device) to accept offloaded jobs. Amazon EC2
(Elastic Compute Cloud) in US West (Northern California)
region operating at 2.4 GHz is chosen for cloud. To connect
the virtual machine (client IoT device) to remote PC, a wireless
ad-hoc network is created between the client and the server.

Table I compares the latency when an application is of-
floaded to a desktop PC T rPC

app running at different frequencies
with the execution time T l

ex when the application is run on the
client. The table also compares T rPC

app and the application’s
latency for offloading to Amazon EC2 cloud T cEC2

app . Results
reveal that offloading the application to a nearby IoT device

1.5 2 2.5 3 3.5

Processor Frequency (GHz)

0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 L
at

en
cy

 (
s)

Bayes Network
Boltzmann Machine
Cost Optimization
Kmean Clustering
Running Statistics
Data Sort
SVM Pegasos
SVM Rank

Fig. 1. Average latency of the offloaded applications for the remote PC as
the processor frequency varies.

(remote PC in this case) as compared to offloading to the cloud
achieves either better or comparable performance for most of
the applications in our test suite. For example, Bayes Network
shows an improvement of 49.6% in terms of latency when it is
offloaded to the remote PC running at 3.60 GHz as compared
to the cloud offloading.

Fig. 1 depicts the mean latency of the offloaded applications
in our test suite as we tune the processor frequency of the
remote PC. We observe that the latency decreases considerably
as the processor frequency of server increases. For example,
latency for Boltzmann Machine decreases from 4.75 s to 2
s (an improvement of 58%) as processor frequency is tuned
from 1.20 GHz to 3.60 GHz. Results also show that the latency
does not decrease linearly as the server processor frequency is
increased since it depends on several parameters, such as the
number of active cores, network bandwidth, and cache size.

IV. CONCLUSIONS
In this paper, we have proposed a computation offloading

scheme in which an IoT device first try to offload tasks to
another IoT device in its vicinity instead of directly offloading
to the cloud. Furthermore, in our proposed scheme, the IoT
devices tune their tunable parameters (e.g., processor operating
frequency) to meet the application’s real-time deadlines. Ex-
perimental results reveal that the proposed scheme achieves
better or comparable performance (21.4% improvement on
average) in terms of application latency as compared to the
cloud offloading.

REFERENCES

[1] Z. Li, C. Wang, and R. Xu, “Computation Offloading to Save Energy
on Handheld Devices: A Partition Scheme ,” in Proceedings of the 2001
International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, Atlanta, Georgia, USA, November 2001, pp. 238–
246.

[2] K. Kumar and Y. H. Lu, “Cloud Computing for Mobile Users: Can
Offloading Computation Save Energy?” Journal of Computer, vol. 43,
no. 4, pp. 51–56, April 2010.

[3] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for
VM-Based Cloudlets in Mobile Computing,” Journal of IEEE Pervasive
Computing, vol. 8, no. 4, pp. 14–23, October 2009.

[4] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal of Machine
Learning Research, vol. 10, pp. 1755–1758, 2009.

209

