
A Neural Network-based Appliance Scheduling
Methodology for Smart Homes and Buildings with

Multiple Power Sources
Raj Mani Shukla∗, Prasanna Kansakar† and Arslan Munir‡

Parallel and Distributed Computing and Embedded Systems Laboratory
Department of Computer Science and Engineering

University of Nevada, Reno
Email: ∗rshukla@unr.edu, †pkansakar@nevada.unr.edu, ‡arslan@unr.edu

Abstract—The increased production of electrical energy from
various power sources, such as solar, wind, and nuclear, allows
smart buildings to be connected with multiple power sources.
In an effort to conserve environment, electrical energy usage is
gradually shifting towards renewable and green energy sources,
such as wind, hydro, and solar. Regardless of power sources,
a user demands for continuous energy supply and also desires
to minimize the electricity bill. Further, in a dynamic pricing
environment, the price of electricity varies throughout the day.
In such a dynamic pricing environment, appliance scheduling
with multiple power sources tied to a smart home/building is
an important research problem. In this paper, we propose a
methodology to abet green environment by prioritizing green
energy sources and to minimize the electricity cost for the user.
Our proposed methodology leverages a smart grid architecture
which employs a greedy strategy to select the most feasible power
source amongst the available power sources tied to a smart
home/building. Our proposed methodology further leverages a
neural network-based approach for appliance scheduling that
optimizes the use of power sources in a dynamic pricing
environment to minimize the total cost of electricity usage.

Keywords-Smart grid, renewable and non-renewable energy
sources, appliance scheduling, Boltzmann machine

I. INTRODUCTION AND MOTIVATION

Electricity generation which has largely been dependent on
non-renewable and non-green energy sources, such as coal
and oil, is slowly transitioning to renewable and green energy
sources, such as wind, solar, and nuclear. With the recent
push towards adopting sustainable green energy policies in
many parts of the world, the study of renewable and green
energy sources for electricity generation, and, smart electricity
utilization has gained much interest. Consequently, the reliance
on non-renewable and non-green energy sources is slowly
decreasing with the increasing proliferation of renewable and
green energy sources.

There are, however, several challenges that need to be
addressed when using green energy sources for electricity
generation. Perennial green energy sources, such as solar
and wind, are not stable energy sources as the electricity
generation from these sources fluctuates based on weather
conditions, such as rain, air pressure, and temperature, etc.
Other forms of green energy sources, such as nuclear power,
have high implementation, operation and maintenance costs.

Hence, in order to maintain a smooth supply of electricity
using renewable green energy sources, it is necessary to find
a balance between cost and availability. Because of these
challenges, traditional non-renewable and non-green sources
like coal and diesel are still used as major energy sources for
electricity generation in most parts of the world.

The transition to renewable and green energy sources
for electricity generation also requires study of electricity
consumption patterns. For example, if the electricity demand
during peak hours exceeds the electricity generation by
renewable and green energy sources, then, traditional non-
renewable and non-green energy sources must be used to meet
demand. The objective is to decrease the reliance on traditional
energy sources by spreading out electricity demand in such a
way that the demand is mostly satisfied by renewable and
green electricity generation.

To consider the effects of electricity consumption pattern
on electricity generation, it is imperative to study household
sector as it is the major consumer of electric power. The
push towards sustainable renewable and green energy for
electricity generation is assisted if the electricity consumption
pattern of households is regulated. As more and more homes
are equipped with smart devices and appliances that are
automated or centrally controlled, monitoring, collection,
and maintenance of usage statistics become possible. These
statistics can be leveraged to determine a schedule for device
and appliance usage such that the maximum electricity demand
remains below a threshold that can be satisfied by renewable
and green electricity generation.

The use of smart home technology not only assists the
transition towards renewable and green energy, but also
decreases the average energy expenditure of households. The
price of electricity generation fluctuates based on the prices
of non-renewable as well as renewable energy sources. Given
an estimate of non-renewable and renewable energy prices, a
smart home/building can schedule device and appliance usage
such that the electricity bill of a household is minimized.

In this paper, we propose a smart-grid architecture which
leverages our proposed scheduling scheme for energy usage
by devices and appliances in a smart home or building that
strongly favors renewable green energy sources for electricity
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generation while minimizing the electricity generation costs.
The smart grid communicates with a smart scheduler which is
implemented on the consumer-side/demand-side and responds
to the fluctuating price of energy sources by modifying the
electricity consumption pattern of the smart home or building.
Our proposed smart grid economizes electricity bills by
implementing a demand side management (DSM) model. The
implemented DSM model regulates electricity usage patterns
by adapting the demand response (DR) to dynamic pricing
change of energy sources.

Our main contributions in this paper are as follows:
• We propose a smart grid architecture for the scenario

where multiple power sources are connected to a smart
home/building.

• We propose a greedy algorithm to order different energy
sources based on their estimated price forecasts with
strong priority given to renewable energy sources.

• We propose a neural network-based optimization
scheduler that generates an optimal schedule for devices
and appliances using the order of energy sources
determined by the greedy algorithm.

The remainder of this paper is organized as follows.
Section II summarizes related work. Section III describes
the algorithms used in our proposed appliance scheduling
methodology. Section IV presents the results obtained from
our methodology and Section V concludes this study.

II. RELATED WORK

Electrical appliance scheduling for smart homes and
buildings has been extensively studied and several innovative
articles using analytical models, algorithms and optimization
techniques are available in literature [1] [2].

Vardakas et al. [3] proposed analytical models for
appliance scheduling in smart homes using online and
offline implementation methods. The offline implementation
method used historical data or prediction models to extract
electricity consumption pattern of households whereas the
online implementation method monitored ongoing/current
electricity consumption to determine electricity consumption
pattern. They found that offline implementation presented a
better estimate of electricity consumption pattern than online
implementation. They also noted that the use of a scheduling
method whether offline or online significantly decreased the
total average cost as compared to not using any scheduling
method.

Historical energy consumption data [4] was also employed
by Adika et al. [5]. In their implementation, historical data was
translated into hourly appliance time usage probabilities which
was then used to model customer’s electricity demand pattern.
Using these probability models, they defined a DSM model,
which also considered fluctuating energy prices, to determine
a suitable demand response. The authors noted that applying
dynamic pricing on traditional consumers (i.e., the customers
who do not have a scheduling method for demand response)
increased their electricity bills. They observed that the flat
rate tariff scheme was 6.7% cheaper than the dynamic pricing

for traditional consumers. They also presented a comparison
between households with demand response and traditional
households under dynamic pricing. The results revealed that
the households with demand response resulted in 10.92%
savings in electricity bills.

Many innovative smart home appliance scheduling methods
are also available which do not make use of historical
data in order to determine electricity consumption pattern.
These methods leverage user-defined appliance schedule as
constraints for their scheduling algorithms. Some of these
algorithms are mixed integer linear programming (MILP) [6],
fuzzy goal programming [7] and stochastic scheduling [8]. Sou
et al. [6] and Bu et al. [7] used similar approaches based on
MILP formulation with discrete time-slots. Bu et al. [7] also
incorporated fuzzy goal programming to their model which
transformed user time preferences from rigid constraints to soft
violation penalty objectives. Chen et al. [8] defined a stochastic
scheduling algorithm using user defined appliance schedule.
Their energy consumption scheduling scheme achieved up
to 41% reduction in electricity bills when compared to
the traditional appliance operation without scheduling. These
user defined appliance schedule techniques, although more
flexible, do not provide a good estimate of overall electricity
consumption pattern.

In this paper, we leverage concepts similar to those used
by Sou et al. [6] and Bu et al. [7]. However, in contrast
to the aforementioned works, we propose a smart grid
architecture which communicates with a smart scheduler
in a home/building to select the appropriate energy source
for a household while giving high priority to green energy
sources, and then performs appliance scheduling to minimize
electricity cost. We discretize the scheduling period into a
prescribed number of uniform time-slots and employ a greedy
algorithm to determine preferred energy sources for each time-
slot. Our greedy approach uses historical data [9] to extract
electricity consumption pattern of a common household. We
use a Boltzmann machine neural network to minimize the
cost of electricity consumption in our appliance schedule
methodology.

III. METHODOLOGY

Our appliance scheduling methodology leverages a smart
grid architecture and consists of two distinct phases: energy
source determination and appliance scheduling using neural
networks. Before describing the phases, we first discuss the
proposed smart grid architecture.

A. Proposed Smart Grid Architecture

Figure 1 depicts our proposed smart grid architecture. We
use this architecture as a model for describing our demand
side management scheme. The architecture model consists
of a central smart grid which supplies electricity generated
from various green (wind, hydro and nuclear) and non-green
(coal and diesel) energy sources to consumers. In addition,
households may also have energy sources associated with
them which is stored in a privately owned grid. There are
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Fig. 1. Proposed smart grid architecture.

also community owned grids and energy produced from these
grids is proportionally distributed according to household’s
electricity usage. We consider households to be the primary
consumer of electrical energy in our model.

The smart grid maintains pricing and availability
information for different energy sources used for electricity
generation. This information is crucial to implement our
proposed demand side management scheme. The smart grid
communicates this information to smart scheduling units
placed at every smart home/building connected to the smart
grid. The smart scheduling units implement the scheduling
algorithm used for demand side management.

The smart scheduling unit analyzes historical records
of electrical device/appliance usage in a home/building to
create electricity consumption profiles. The scheduling unit
uses these records along with the pricing and availability
information for different energy sources communicated by the
smart grid in order to determine an optimal device/appliance
schedule for the home/building.

Our proposed appliance scheduling methodology for the
smart scheduling units prioritizes green energy sources for
satisfying electricity demand. The methodology’s primary
objective is to determine an appliance schedule that decreases
reliance on non-green energy sources for electricity generation
while keeping consumer costs minimum. The proposed smart
grid architecture model and appliance scheduling methodology
thus benefits consumers as well as the environment.

B. Symbols

Our methodology separates appliances (A) into two broad
categories – schedulable (s) and non-schedulable (n). Energy
sources (S) are categorized into three types: green storable
energy (G), green non-storable energy (G), and non-green
energy (N ). We use ηA to denote the number of appliances of
category A in a household. We denote an individual appliance
– zth appliance, of categoryA asA(z). We use VS to represent
the total amount of energy sources of type S available in the
scheduling period.

We use historical electricity consumption data to extract
electricity usage pattern. Let P be the total number of
scheduling periods for which historical data is available. Each
scheduling period is discretized into T number of uniform
time-slots; t denotes the tth time-slot of a scheduling period.

Let etA be the electricity demand of all the appliances in
category A in the tth time-slot. EA denotes a collection
of electricity demands of all appliances in category A over
one scheduling period and EP

A denotes EA collected over P
scheduling periods. rtS denotes the amount of energy sources
of type S allocated to the tth time-slot and RS is the collection
of rtS allocated over a scheduling period. ctS represents the
price of energy sources, S, in different time-slots, t, over the
scheduling period.

C. Methodology Phases

Phase I: Energy Source Determination: Algorithm 1
presents the steps involved in the first phase of our appliance
scheduling methodology associated with the proposed smart
grid architecture. This algorithm is used to assign energy
sources to all T time-slots in a scheduling period. The
algorithm uses historical data of electricity usage of all
appliances in a time-slot t.

Once the electricity consumption pattern is available, the
prices of non-green energy sources in each time-slot, ctN ,
is analyzed. This is done by sorting the price values ctN in
descending order while preserving the index information for
the time-slots in another array I . For example, if the 5th time-
slot has the highest price of non-green energy over the entire
scheduling period then the 1st value in the array I is 5.

For the time-slots having the highest price of non-green
energy, energy sources are assigned from the available green
storable energy, VG. If we have more than one green storable
energy source, then, preference is given to the one having
lower cost. This is repeated till VG is depleted to a certain
threshold value Th.

For the time-slots whose electricity demand is not fulfilled
by green storable energy, green non-storable and non-green
energy sources are used. The choice between these two energy
sources is made based on their price in the time-slot under
consideration. If the price of green non-storable energy, ctG
is lower than the price of non-green energy, ctN , in the tth

time-slot, then, the green non-storable energy is used to meet
electricity demand of that time-slot otherwise the non-green
energy is used. Here, it is assumed that the green stored
energy source (G) assigned to each time-slot t is used for
all non-schedulable appliances (n). Only for the schedulable
appliances, green non-stored (G) and non-green (N ) sources
are considered. Hence, our proposed appliance scheduling
approach uses only green non-stored (G) and non-green (N )
sources.

Phase II: Appliance Scheduling using Boltzmann Machine
Neural Network: The second phase of the methodology uses
Boltzmann machine neural network for appliance scheduling.
In this phase, we use a neural network model where neurons
are arranged in a form of two-dimensional grid. The grid
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Algorithm 1 Hourly energy source allocation using greedy
strategy

Input: EP
n - collection of electricity usage profiles of all

appliances for all time-slots
VG - total amount of green storable energy available in a
scheduling period from different sources
ctS - price of energy sources S in different time-slots

Output: RG - collection of green and storable energy source
allocations in a scheduling period
RG - collection of green and non-storable energy source
allocations in a scheduling period
RN - collection of non-green energy source allocations in
a scheduling period
SortDecreasing(ctN , I)
k = 1
repeat

if VG ≥ μ(eIkn ) then
rIkG = μ(eIkn )
VG = VG − μ(eIkn )

end if
k = k + 1

until VG > Th or k = T
for t← 1 to T do

if rtG �= μ(etn) then
if ctG < ctN then
rtG = μ(etn)

else
rtN = μ(etn)

end if
end if

end for

dimensions are the number of time-slots tx in scheduling
period, T , and the total number of schedulable devices in
household, ηs. Each neuron in the grid has two types of
connections: an input connection and weighted connections
with all other neurons in the grid. Each neuron also has
a binary state variable associated with it which represents
whether the neuron is in ON state or OFF state. Let
muv ∀ u ∈ {1, 2, · · · , ηs} and ∀ v ∈ {1, 2, · · · , T } represent
each neuron in the two dimensional grid. iuv is the input to
the neuron muv which is given by es(u) ·min[cvN , cvG ], where
es(u) is the energy demand of the uth schedulable appliance
and min[cvN , cvG ] returns the smaller of the two values cvN and
cvG .

Let wuv,xy ∀ u, x ∈ {1, 2, · · · , ηs} and ∀ v, y ∈
{1, 2, · · · , T } be the weight of the connection between the
neurons muv and mxy in the neural network grid. The weight
between neurons in each row, muv and muy with v �= y,
is A and between neurons in each column, muv and mxv

with u �= x, is B. Here, A and B are large negative numbers
which signify that each schedulable appliance is ON only
once during the scheduling period and in each time-slot only
one appliance is ON . We clarify that our methodology can be

Algorithm 2 Appliance scheduling using Boltzmann machine
neural network
Input: ctS - price of energy sources S in different time-slots

es - energy demand of each individual schedulable appliance
Output: λuv - optimal schedule for appliance operation
RG - collection of green and non-storable energy source
allocations in a scheduling period
RN - collection of non-green energy source allocations in
a scheduling period
θ = 1
for u← 1 to ηs do

for v ← 1 to T do
for x← 1 to ηs do

for y ← 1 to T do
if u = x and v �= y then
wuv,xy = A

else if v = y and u �= x then
wuv,xy = B

else
wuv,xy = 0

end if
end for

end for
iuv = es(u) ·min[cvN , cvG ]
λuv = 0

end for
end for
repeat

repeat
Select a random neuron mxy

for u← 1 to ηs do
for v ← 1 to T do
ξ = iuv +

∑
λuv · wuv,xy

end for
end for
P =

1

1 + e
−ξ
θ

if ξ > τ then
Switch state of mxy

else
Switch state of mxy with probability P

end if
ς = ς + 1

until ς > ςmax

θ = α · θ
until θ < θmin

for u← 1 to ηs do
for v ← 1 to T do

if λuv = 1 then
if cvN < cvG then

rvN = es(u)
else

rvG = es(u)
end if

end if
end for

end for
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TABLE I
ENERGY DEMAND OF EVERYDAY HOUSEHOLD APPLIANCES.

Appliance Energy(kWh)

Dishwasher 0.50

Laundry 2.30

Oven 6.00

Water Heating 12.00

Sweep Pump 0.56

TABLE II
MINIMUM AND MAXIMUM PRICES OF ENERGY SOURCES.

Energy Source Type
Min. Price Max. Price
($/kWh) ($/kWh)

Coal N 0.087 0.119

Advanced Nuclear G 0.092 0.101

Biomass G 0.090 0.117

Solar PV G 0.098 0.193

applied for different working needs of appliances by adjusting
the granularity of the scheduling period. Weight between all
other neurons is set to zero.

Let λuv be the binary state variable of the neuron muv . λuv

takes on a value of either 0 or 1 which represents the neuron
as either ON or OFF respectively. If λuv is 1 (ON ) for a
particular u and v, then, it implies that appliance u is scheduled
to operate in the vth time-slot. The large negative neuron
weight connections between each row and column ensure that
at any given instance of the neural network grid, only one
neuron is active in each row and column.

Algorithm 2 presents the steps involved in the second
phase of our appliance scheduling methodology. The algorithm
first initializes the neural network by defining the states of
the neurons λuv , weight of the connection between neurons
wuv,xy as well as input connections to the neurons iuv. Once
the initial state of the neural network is defined, simulated
annealing based Boltzmann machine relaxation technique is
applied to advance the network to a low-energy stable state.
This technique is implemented using two loops. The outer loop
controls the annealing schedule of the system by decreasing
the value of temperature, θ, in each iteration. The inner loop
is repeated for a specified number of times, ςmax, such that
almost all the neurons are randomly selected in the inner loop.
The temperature decrease is controlled by a cooling factor
α which is selected such that the cooling process is slow.
The slow cooling process ensures that the network has a high
probability of reaching an optimal configuration. The inner
loop performs a randomized local search of the neural network
and updates the state of neurons based on their excitation,
ξ. A neuron’s excitation ξ is a sum of the neuron’s input
connection i and weights w on all other connections which are
in ON state. Updates to the state of neurons of the network
are probability based and are dictated by Glauber dynamics,
a function of excitation ξ and temperature θ of the system, as
presented in Algorithm 2.

IV. EVALUATION RESULTS

We tested our methodology using five schedulable
household appliances. Table I shows the devices and their
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Fig. 2. Energy source allocation for non-schedulable appliances.
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Fig. 3. Energy source allocation for schedulable appliances.

estimated energy demands per hour of operation [10]. Table II
shows the minimum and maximum prices of five energy
sources [11] considered for testing our algorithm. To get
hourly fluctuation of prices, we assume that the price fluctuates
randomly between the minimum and maximum limit. For
historical electricity consumption data necessary for the first
phase of the methodology, we use hourly energy consumption
data for Anchorage, Alaska available from [9]. Figure 2 shows
the hourly energy source allocation for the non-schedulable
appliances (i.e., appliances that cannot be scheduled based on
their demand profile determined for the data obtained from
[10]) as arbitrated by our proposed greedy algorithm. From
the figure, it can be seen that the biomass energy is allocated
only in two time-slots. This is because, although the cost of
biomass energy is comparatively lesser than solar energy, the
biomass energy is not sufficiently available to be allocated in
all phases. Hence, biomass energy is allocated only in those
phases where its hourly cost is lower than solar energy.

Figure 3 represents the energy source allocation for
schedulable appliances. Figure 2 and Figure 3 collectively
represent the energy sources assigned in a particular time-
slot. For instance, both solar and coal energy are allotted
in time-slot 5. In this time-slot, solar energy is used for
the non-schedulable appliances whereas coal is used for
the schedulable appliances. Consequently, although coal is
selected for this time-slot, it will be used only if some
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TABLE III
APPLIANCE ASSIGNMENT ON HOURLY BASIS.

Appliances
Time-slots

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Dishwasher 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Laundry 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Oven 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Water Heating 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sweep Pump 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

appliance is scheduled in this time-slot according to our
proposed Boltzmann machine neural network. For example,
Figure 3 states that coal is selected as the energy source for
time-slots 5, 6 and 21, however, Table III indicates that water
heating pump and sweep pump are scheduled in time-slots 5
and 6 whereas none of the appliances is scheduled in time-
slot 21. Hence, the use of coal, which is a non-green energy
source, is minimized throughout the day by our proposed
methodology.
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Fig. 4. Daily electricity bill for schedulable appliances.

Table III shows the operational time-slots for each
appliance. In the table, each column represents a time-slot
and each row represents the appliance to be scheduled. A 1
entry at the intersection of a row and column represents the
ON state of the appliance while 0 represents OFF state. Each
schedulable appliance operates only in one time-slot and each
time-slot can have a maximum of 1 schedulable appliances
such that each row has a single 1 entry and each column has
a single 1 entry. Figure 4 shows the daily electricity bill for
schedulable appliances obtained from Algorithm 2 for a period
of 30 days. This electricity bill is the minimum bill for running
these schedulable appliances. The figure indicates that there is
very little variation in electricity bill throughout the 30 day
period as minimum price of electricity has a fixed value for
each energy source, and our proposed methodology schedules
appliances only when the electricity price is minimum. These
results verify the effectiveness of our proposed methodology
in minimizing the electricity cost.

V. CONCLUSION

The use of renewable energy is expected to grow in future
due to environmental concerns, however, conventional energy

sources will still be used due to their low cost. Regardless
of the electricity generation sources, consumers desire to
minimize the total electricity bill. In this paper, we have
proposed a methodology that promotes green environment by
prioritizing the usage of renewable energy sources and also
minimizes the electricity cost for the consumers. Our proposed
methodology consists of two phases. In the first phase, we
use a greedy strategy to determine the appropriate energy
source to be used. In the second phase, we apply Boltzmann’s
neural network algorithm to schedule appliances to minimize
the total energy cost. Results verify the effectiveness of our
proposed methodology in minimizing the electricity cost. In
future, we expect to extend our work to consider appliances
with different operating phases and priorities. Moreover, we
also expect to estimate the future energy demand of different
energy sources given their current usage trends.
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